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ABSTRACT 

We construct a new version of syntomic cohomology, called rigid syntomic 
cohomology, for smooth schemes over the ring of integers of a p-adic field. 
This version is more refined than previous constructions and naturally 
maps to most of them. We construct regulators from K-theory into rigid 
syntomic cohomology. We also define a "modified" syntomic cohomology, 
which is better behaved in explicit computations yet is isomorphic to rigid 
syntomic cohomology in most cases of interest. 

1. I n t r o d u c t i o n  

The syntomic cohomology, more precisely the cohomology of the sheaves s(n)  

on the syntomic site of a scheme, was introduced in [FM87] in order to prove 

comparison isomorphisms between crystalline and p-adic dtale cohomology. I t  

can be seen as an analogue of the Deligne-Beilinson cohomology in the p-adic 

world (for an excellent discussion see [Nek98]). In particular,  when X is a smooth  

scheme over the ring of integers )2 of a finite extension K of Qp there should 

exist higher Chern classes from algebraic K- theory  into the syntomic cohomology 

of X.  Such classes have been constructed,  sometimes under certain addit ional 

assumptions,  by Gros [Gro90] and by Niziot [Niz97]. 
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Syntomic cohomology comes in different flavors (much like Deligne-Beilinson 

cohomology). The versions discussed above are well behaved only for proper 

schemes. In particular, they do not have the homotopy property for affine spaces. 

This makes computations difficult because most constructions in K-theory go 

through non-proper schemes. 

In [Gro94], Gros introduced, using the rigid cohomology of Berthelot 

[Ber96, Ber97], rigid syntomic eohomology for a scheme X which is smooth 

over an unramified base. When the scheme X is affine he constructed rigid 

syntomic regulators, 

cij: Kj(X) --+ H2i-J(X, s(i)X/K,rig), 

from K-theory into his rigid syntomic cohomology. Gros was able to show that 

the value of the syntomic regulator on certain cyclotomic elements in the higher 

K-theory of number fields is, when properly normalized, given by the values of 

p-adic polylogarithms at roots of unity. 
It should be mentioned here that there is another method of "controlling" 

syntomie cohomology, due to Somekawa [Som99]. In this method one assumes X 

has a compactification where the complement is a relative normal crossings divi- 

sor. Somekawa was able to prove the result of Gros for all cyclotomic elements. 

The following philosophy exists: 

PHILOSOPHY 1: There should be a p-adic Beilinson conjecture that relates special 
values of p-adic L-functions to syntomic regulators. 

Special cases of this are the results of [Gro90] and [KNQD98]. One should 
be able to derive some general conjecture from [PR95]. For results about CM 

elliptic curves see the discussion below. 
The main result of this work is an extension of the constructions of Gros to 

an arbitrary smooth finite type V-scheme X, where V is any complete discrete 

valuation ring with a perfect residue field of characteristic p. For such a scheme 

X we define in section 6 syntomic cohomology H~yn(X, n) and in section 7 we 

construct Chern classes from K theory to it. Our definition takes into account 

more growth conditions than that of Gros: we also consider log singularities. The 

result is that Hsyn is always finite dimensional (Proposition 6.3). Our cohomology 

maps when possible to the version of Gros (Proposition 9.5) and to the version 

of Niziot (Proposition 9.9). 
Another objective of this work is to begin to develop tools for computations in 

syntomic cohomology. Our main result here is the construction of a modif ied 

syntomie  eohomology, denoted H*s(X, *), in section 8. This cohomology is 
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related to syntomic cohomology by a natural map (Proposition 8.6.2) which is an 

isomorphism in most cases of interest (Proposition 8.6.3). It is significantly easier 

to compute when the base V is ramified. We have also found that  the original 

rigid syntomic cohomology of Gros (without log singularities), extended to the 

case of ramified base, is useful in some computations (see for example [BdJ99]). 

It again can come with an original or modified flavor, the latter being most useful. 

Let us discuss a bit of applications. In a sequel to this paper [Bes99a] we 

compute the syntomic regulator K2(X) --+ H2y,(X, 2) when X is smooth and 

proper of relative dimension 1 over ]). We show that there is a precise relation 

between this regulator and the p-adic regulator constructed by Coleman and de 

Shalit [CDS88]. In particular, for elliptic curves with complex multiplication their 

results in conjunction with ours relate the syntomic regulator with special values 

of a p-adic L-function of E,  in line with the Philosophy 1. 

In [Bes99] we will build on the results of this paper and embed syntomic 

cohomology in some other "cohomology theory" which has Poincar~ duality. 

This is very useful for computations involving cycles. We will show how to re- 

late p-adic Abel-Jacobi maps to a generalization of Coleman's p-adic integration 

theory [Co185]. 

Finally, in [BdJ99] we intend to show how to compute syntomic regulators on 

the wedge complexes introduced in [D J95] using p-adic polylogarithms. This is 

a generalization of the results of Gros on cyclotomic elements described above. 

ACKNOWLEDGEMENT: We would like to thank Gros, Berthelot, de Jeu, Scholl 

and Gabber for helpful conversations. Parts of this work were done while staying 

at the SFB 478 "Geometrische Strukturen in der Mathematik" in the University 

of Miinster and at IHES. We would like to thank both institutions. Finally, we 

would like to thank the referee for some helpful comments. 

Notation: Throughout this work )2 is a complete discrete valuation ring with 

maximal ideal p, quotient field K and residue field a of characteristic p. When 

t~ is perfect we let Vo c 12 be the Witt  ring of a and Ko its quotient field. Much 

of the theory can be carried out without the assumption that V is discrete, but 

since some results we need are not yet documented in the literature we prefer to 

make this additional assumption. 

All schemes will be separated and of finite type over their respective bases. We 

let Compl (respectively Compl K when K is a field) denote the category of bounded 

below cohomological complexes of abelian groups (respectively K-vector spaces). 
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2. C a n o n i c a l  r e s o l u t i o n s  

One of the difficulties in constructing Chern classes from higher K-theory into a 

cohomology theory is that one has to realize the cohomology theory as the coho- 

mology of a complex which is functorial on the category of schemes. This means 

that  many of the constructions one makes on the level of cohomology or of the 

derived category have to be refined by using some canonical resolution. As an ex- 

ample, in [Hub95] Huber systematically uses a Godement resolution to eventually 

obtain Chern classes into her absolute cohomology. In our constructions we will 

need to consider the cohomology of rigid analytic spaces, which unfortunately 

do not have enough points so that at least naively a Godement construction is 

impossible on them. In fact, one can replace the usual rigid spaces by spaces 

with enough points obtaining an equivalent sheaf theory [vdPS95]. Since not 

everything we need is documented in the literature at the moment, we have cho- 

sen to use instead the approach of Beilinson [Bei85, 1.6.5] where it was used to 

construct Zariski sheaves computing Deligne cohomology. 

Suppose we are given a category `4 and a functor T~ ~-~ Uv, f ~-~ fu ,  from 

,4 into the category of sites with continuous morphisms (we could work directly 

with toposes instead). Then one can consider the category B whose objects are 

pairs (:D, F )  where :D E `4 and F is a sheaf on Uv. A map (:D, F)  -+ (:D', F ' )  

consists of a map f :  :D --~ :D ~ in ,4 together with a map of sheaves F' --+ fu.F.  
Then B is, in the terminology of [SD72, 1.2.2], bi f l l t ered  b y  t o p o s e s  o v e r  `4 

(loc. cir., 4.1.0). We can consider the section category F_(B) of loc. cit., 1.2.8. 

Explicitly, an object of F E F_(B) is given by a collection of sheaves F~ on Uv, 

for every l)  E `4, together with morphisms of sheaves f*: Fv, --+ f v .Fv  for every 

morphism f :  I) -~ T~' in ,4 such that  one has 

(2.1) ( f  o g)* = g* o f*, id*- - id .  

By loc. cit., 1.2.12, F_(B) is a topos. By loc. cit., 1.3:10 there is a collection IB of 

abelian objects of F(B) such that  the following two properties hold: 

• Any abelian F E F__(B) injects into I E IB. 

• For I E IB and for any :D E A, the sheaf Iv  on UI) is flasque (in the sense 

of loc. cit.). 

Suppose then that  we are given a complex of abelian objects F ° in F__(B) and 

that  we want to find a contravariant functor ,4 -~ Compl, :D ~ C~), in such a 

way that  C~ represents RF(U~, F~) and that if f :  :D --+ :D' is a morphism in 

,4, then the map f*: C~, --+ C~ induces the obvious map on cohomology. Since 

flasque sheaves are acyclic with respect to the global section functor all we have 
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to do is find a resolution I ° E I s  (i.e., that  I n E Is  for all n) for F ° and take 

C~ = F(U9, I~)). This is the basic construction that we need. 

This idea can be extended to diagrams of sheaves: Suppose that  we have a 

diagram of complexes in _F(B) indexed by the small category J. In other words, 

for e a c h / )  E .4 we are given a diagram of complexes of sheaves on Uz~, j ~4 F ~  

such that  all the diagrams 

F ;z  ) > F~,v 

commute. We can define a functor from j o p  × .4 to sites by composing the old 

functor with the projection to the second factor. Then we see that  our diagram 

becomes an object of the corresponding section category. Resolving it we now 

get for each :D and for each j a flasque resolution of F ~  on Uz) and taking the 

global section functor again we obtain a functor J x .4 -+ Compl whose value at 

(j, 7)) represents RF(Uv, F~o ). 

Remark 2.1: One can try to generalize this idea to obtain completely canonical 

resolutions using the canonical section of the fibration B xA B. Some set the- 

oretical problems seem to arise this way. It appears however that  Gabber can 

define completely canonical resolutions using an extension of the canonical Barr 

resolution. 

Since the resolutions we obtained are not injective there could a-priori be a 

problem of the uniqueness of the theory obtained in this way. This is easily 

settled however: Suppose that one obtains two functorial resolutions, I F and I~, 

to F °. Resolving now the diagram I F 4- F ° --~ I~ we obtain a diagram 

T I T  
I~' < F • > I ~  

and taking global sections we see that we have 5 different functorial complexes 

connected by functorial quasi-isomorphisms. Whichever way we continue to tor- 

ture these complexes it will be clear that the 5 possible complexes one obtains 

preserve this connectivity property. This of course implies that  the cohomology 

of all complexes is canonically isomorphic and also it is standard to obtain from 
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this (see for example the proof of Proposition 9.9) that the theories of Chern 

classes one eventually obtains are independent of choices. 

With this much said we can allow ourselves a bit of freedom in choosing our 

complexes. As an example we will define our rigid complexes in section 4 with 

respect to one choice of canonical resolutions, but when we compare our rigid 

complexes with the de Rham complexes in section 5 these complexes will change 

because we will be resolving additional sheaves and spaces. The above remarks 

guarantee that nothing is damaged by this procedure. 

Finally, we can use similar ideas to define products: Suppose we have in F_(B) 

a map F ° ® G ° -+ H °. In our applications we will assume that all sheaves are 

of K-modules, where K is a field, so flatness problems do not arise. We can 

resolve F"  and G ° by I~ and I~ respectively. Now we can resolve the diagram 

I~ ® I~ +- F"  ® G" -+ H" and get J~i~®15 ) +- J~F.®C.) -+ J~" Remembering 

that we have a map I~ ® I~ -+ J~l~X5 ) and taking global sections we get for 

each l) E A a diagram 

r(uv,  I~)®r(uv, IS)  ~ r(uv,  Jb~®,~)) < ~ r(uv, J('v.®c.)) -~ r(uv,  JS). 

Here it is implicit in the notation that global sections on U~) are taken with 

respect to the section sheaf at 73. Thus we obtain a functorial cup product in 

the derived category. 

3. T h e  q u a s i - f i b e r e d  p r o d u c t  a n d  c u p  p r o d u c t s  o n  c o n e s  

We describe a bit of homological algebra that we need. Nothing is really new 

here but we want to record things in a way convenient for use. 

Suppose we are given complexes X °, Y° and Z ° with maps f :  X ° --+ Z ° and 

g: Y° --+ Z °. Then one can form the naive fibered product X ° Xz. Y° whose n-th 

component is X '~ x z-  Y'~. It is of course equal to the kernel of f - g: X" @ Y" --~ 

Z °. Therefore, one should prefer to use instead the slightly different construction, 

called the quas i - f ibe red  p r o d u c t ,  X ° ~ z o Y  ° :-- C o n e ( f -  g)[-1]. We have the 

well known 

LEMMA 3.1: In the situation above, if  the map f - g is surjective, then the two 

constructions are quasi-isomorphic via the map 

(3.1) (x ,y)  --+ (x@y,O). 

It will be convenient to use both constructions in what follows. 

Notice that we have canonical maps 

(3.2) Z ' [ - 1 ]  i . p > X ' ; ( z . Y  > X ' @ Y  ° 
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coming f rom the cone construction.  Let us write PA and PB for the composi t ion  

of p with the first and second project ion respectively. The  following construct ion 

of the cup p roduc t  is a variant  of one of Niziot [Niz93], which is itself a variant  of 

a cons t ruc t ion  of Beilinson. Alternatively,  it is a special case of the const ruct ion 

of [Bei86, 1.11]: 

LEMMA 3.2: Suppose we are given complexes X~, Y~', Z~ and maps fi, g~ as 

above for i = 1, 2, 3, and that we are given maps of  complexes U: X[  ®X~ -+ X~, 

and  similarly for Y and Z, which are (strictly) compatible with the maps fi and 

gi in the obvious sense. Then: 

1. There exist a map (bottom horizontal), making the following diagram com- 

mute, where the top horizontal map is induced by the maps U. 

1 1 
® • , " -  • x z~ Y~ ) u X3 x z~ Y~ . 

2. On cohomology the induced cup product is compatible with the cup prod- 

ucts on X ' s  and Y 's  via the projections PA and PB. One has the following 

projection formula for z C H*(Z~) and w E H*(X~>(z~Y~): 

( ( i l ) , ( z ) )  12 w = (i3)* [z U (g2),(pB2),W]. 

Proof: (Compare  with [Niz93, Prop.  3.1] or [Bei86, L e m m a  1.11]) One chooses 

a p a r a m e t e r  3' and defines the cup product  by the formula 

('TI,Yl, Zl)[-J (x2,Y2, Z2) ~--'(Xl (-Jx2, Yl I J Y2, 

(3 .3)  u + (1 - 

+(- -1)  degx'((1 -- 3`)fl(Xl) ~- 3`gl(Yl)) U Z2). 

All of these products  are known to be homotopic  for different values of 3'- Check- 

ing the required proper t ies  is s t ra ightforward from this formula, including the 

compat ib i l i ty  with PA and PB. For tile project ion formula one specifies 7 = 0. 
| 

Tile quasi-fibered product  can be used to invert quasi- isomorphisms in a canon- 

ical way. This  is done quite often in [Hub95] except tha t  there the dual construe-  

t ion of the quasi -pushout  was being used. We want  to describe this in a sys temat ic  

way so tha t  we do not have to ment ion it explicitly any more. 
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The problem is as follows: Suppose we are given a map in the derived category 

of complexes between complexes X ° and Y*. We want to consider the cone of this 

map. Unfortunately it is well known that this cone is only unique up to a non- 

canonical quasi-isomorphism. In particular, if X ° and Y° are instead presheaves 

of complexes the associated cone cannot be naively made into a presheaf. If 

we are instead given an explicit and functorial description of the morphism in 

question, then we can construct a cone quite easily using the quasi-fibered prod- 

uct: Suppose the morphism is given by a sequence of morphisms connecting 

X ° to Y° and all the morphisms that are going "in the wrong direction" are 

quasi-isomorphisms. 

Definition 3.3: In the situation above we will say that there is a map X ° -~ Y" 

in the generalized sense. If X ° and Y° are functors C -+ Comp] we will say that 

the map X ° --+ Y° in the generalized sense is functorial if all the intermediate 

maps are functorial as well. 

We can always assume that  the situation is given by the following diagram, 

(3.4) X°--+ Zt  <~ Z~--+ Z~ <~ . . .Z~-+  Y °, 

with all the left pointing arrow quasi-isomorphisms. Indeed, if two arrows point in 

the same direction we can simply compose them and if the leftmost or rightmost 

arrows were left pointing quasi-isomorphisms we could simply replace X ° by Z~ 

or Y° by Z~*. Thus the situation described above can always be reached. Now 

we simply replace this diagram by the diagram 

( £ "  : =  X "  - " ~ • × zr Z~) --+ Z~ • .. Z~ -+ Y*, 

where the first arrow is the composition of the projection on Z~ with the map 

Z~ --+ Z~. One checks easily that because Z~ --~ Z~ is a quasi-isomorphism so 

is the projection X° ~ X ° and the map X° -+ Z~ induces on cohomology the 

same map as H ( X  °) ~ H(Z~). Repeating this process we obtain a diagram 

Z 

X ° 

X • .......... > y~  

such that the vertical map is a quasi-isomorphism and such that on cohomology, 

where the dotted arrow exists, the diagram is commutative. Thus, the cone of 

~7 ° -~ Y* is a good replacement for the cone of the nonexistent map X ° -~ Y°. 
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Sometimes it will be possible to replace a morphism in the generalized sense 

with an honest morphism, as follows from the following trivial lemma. 

LEMMA 3.4: Suppose that  we have, in the situation of  diagram (3.4), a map o f  

complexes R ° -+ S ° and morphisms from R ° to all the Z~ making  the extended 

diagram 

X ° ~ Z~ ~ Z2 ........... > Y* 

R" ~ S* 

Then we get a map R" -4 J[* from the maps R ° -4 Z.~ and this map commute.  

makes the diagram 

commute.  

R O • S *  

j) , Y  

In particular, we get a map of cones Cone(R* -4 S °) -4 Cone(~ TM -+ Y°). This 

map will be a quasi-isomorphism if the maps R ° -4 X ° and S ° -4 Y° are. 

Finally, application of Lemma 3.2 shows that  if we have 3 diagrams as in (3.4) 

an original, primed and double primed, and if we have products X ° ® X  r° -4 X "° 

and similar products with the Z ' s  and Y, and all axe compatible, then there would 

also be products X° ®)~'~° -4)~"° compatible with the maps to the Y's. 

4. Rigid complexes 

Syntomic cohomology has two main components, rigid and de Rham cohomology. 

Rigid cohomology was defined by Berthelot (see [Ber97]) as the cohomology of 

an object in the derived category of vector spaces which is independent up to 

quasi-isomorphism of some auxiliary data. For the purpose of constructing Chern 

classes it is vital to replace these objects by canonically defined complexes, func- 

torial with respect to the underlying scheme. This turns out to be a nontrivial 

task. We would like to thank Berthelot for pointing out a serious mistake in our 

original argument. 

We will consider schemes which are separated and of finite type over n. We 

will associate our rigid complexes with such a scheme X.  

We introduce the required auxiliary data following Berthelot. Let j be an open 

embedding j :  X ~ X into a proper n-scheme X. Consider a closed immersion 
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X ¢-4 P into a p-adic formal ])-scheme 7 9 which is smooth in a neighborhood of 

X. We call the triple (X, j, 79) a r igid d a t u m  for X and most of time, when j 

is clear from the situation, we will abbreviate this to (X, 79). 

For the formal scheme 79 there is an associated rigid analytic K-space, the 

gener ic  f iber  of 79, denoted 79/¢. There is a canonical spec ia l iza t ion  map 

sp: 79K ~ 79, which is continuous when 79/¢ is given its strong Grothendieck 

topology and 79 its Zariski topology. Berthelot introduces the notion of a tube. 

If Y is a locally closed subset of the special fiber of a formal V-scheme 79, the t u b e  

of Y in 79, denoted ]Y[p, is a rigid analytic K-subspace of 79K whose underlying 

set is the set sp- l (Y) of points whose specialization is in Y. 

Now let Z = X - X. Berthelot introduces the notion of a s t r i c t  ne ighbor -  

h o o d  of ]X[7, inside ]X[p. By definition this is a subset U C ]X[~,, open in the 

strong Grothendieck topology, such that {U,]Z[p} is a covering of ]X[p in the 

same topology. Let V be such a strict neighborhood. Berthelot defines a functor 

j t  from the category of sheaves on V to itself by 

jr(F) = ~ jtr.F, 
u 

where the direct limit is over all U which are strict neighborhoods of ]X[p in 

]X[p contained in V and ju is the canonical embedding. 

Definition 4.1: (Berthelot). In the situation described above, the r igid com- 

p lex  in t h e  de r ived  ca t ego ry  of X with respect to the auxiliary data (X, 79) 

is defined by 
- -  " t  • ~l~rlg (X/K)=z,7,:= RF (]X [~,, 3 f~]xb, )" 

Our task is to replace the object defined above in a derived category by a 
canonical complex representing it. We first explain the required functoriality for 

these complexes. We will call the datum (X, X, 79) a r igid t r iple .  These will 
form a category under a certain class of morphism which we are about to define. 

Definition 4.2: Let (X, X, 79) and (Y, Y, 79') be two rigid triples and let f :  X -+ 

Y be a morphism of n-schemes. Let V be a strict neighborhood of ]X[7~ in 

]X[7~ and let F: V --4 79~c be a morphism of K-rigid spaces. We sa3 ~ that F 

is c o m p a t i b l e  with f if F maps ]X[7~ into ]Y[~,, and there is a commutative 

diagram 
]X[p F >]Y[~,, 

X >Y. 
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LEMMA 4.3: Suppose, in the notation of the previous definition, that U is a 

strict neighborhood of ]Y[~,, in ]Y[p, and that F is compatible with f . Then 

F - i ( V )  is a strict neighborhood of]X[~v in ]X[p. 

D 

Proof'. We first prove the lemma under the assumption that  U = ]Y[p,. Let 

g: X -+ X x Y be defined by g(x) = ( x , f ( x ) )  and let G: V -+ PK × P ~  be 

defined by G(x) = (x, F(x)) .  Let W be the closure of the image of g in X x Y. 
We claim that  G - i  (]W[pxp,) is a strict neighborhood of ]X[p in ]X[~,. This will 

finish the proof of the lemma in this case because G-i(]w[7~xTV,) C F-i(]Y[7~,) 

(because W C X × Y ) .  To prove the claim, let Z =  ( X - X )  × P ' .  This i s a  

closed subset of P × P ' .  It is easy to see that G(V) C ]Z U W[~×~,. Indeed, 

for x E Y either x E ]X[p, in which case F(x)  E ]Y[~,, and sp(F(x)) = f(sp(x)) 

so sp(G(x)) = g(sp(x)) E g(X)  C W,  or sp(x) E X - X and then sp(G(x)) = 

(sp(x),sp(F(x))) E Z. According to [Ber96, Proposition 1.1.14.ii] the covering 

]Z U W[7,×7,, = ]Z[p×p, U ]W[7~xp, is admissible. Since G is continuous we find 
that  the covering V = G-i(]Z[p×~,,) U G-i(]W[~,xp,) is also admissible. We 

now notice that  G- i ( ]z [p×9, )  C VN]X - Z[p  so finally Y = ( V N ] X  - X[p)  U 

G-l(]W[p×p,)  is also an admissible covering. This implies ([Bet96, Remark 

1.2.3(iv)]) that  G-i(]W[~,×p,) is a strict neighborhood of ]X[p in ]X[p and 

therefore the lemma in the case U = ]Y[~,,. 

For the general case we may therefore assume now, by shrinking V if needed, 

that  F(V) C ]Y[p,. The proof now is an easy modification of [Ber96, Proposition 

(1.2.7)]. Since {U, ]Y - Y[p, } is an admissible covering of ]Y[p, it follows that  
{ F -  1 (U), F -  i ( ]y _ y[~o, ) } is an admissible covering of V. The assumption that  
F is compatible with f implies in particular that F - i ( ] Y  - Y[p,) C ]Z[p fq V. 

From this the lemma follows. II 

We write Hom/(V, 7~:) for the collection of morphisms V -~ P~: compatible 

with f .  

Definition 4.4: Let (X, X , P )  and (Y, Y,P ' )  be two rigid triples. We define 

Hom((X, X, P),  (Y, Y, 7~')) to be the collection of all pairs (f, F)  where f :  X ~ Y 

is a ~-morphism and F E l ~  yHoml(V,  Pk) ,  where V runs over all strict 

neighborhoods of ]X[~,, i.e., F is a germ of a morphism compatible with f .  

It follows immediately from Lemma 4.3 that germs of compatible morphisms 

can be composed. Thus, the collection of rigid triples together with their mor- 

phisms form a category, which we denote by T~T. 
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PROPOSITION 4.5: There exists a [unctor 

T~T ~ ComplK, (X, X,79) ~ RFrig(X/K)~,~,, 

such that for each rigid triple the corresponding complex represents its namesake 

in the derived category. 

Proof'. Consider the category A whose objects are fourtuples 79 = (X, X, 79, V) 

where the first 3 objects form a rigid triple and V is a strict neighborhood of 

]X[p in ]X[p. A morphism in this category from ~D to (Y,Y, 79', U) consists of 

a morphism f :  X --+ Y and a compatible morphism F: V ~ U. Given such a 

morphism let j x  and j y  be the corresponding embeddings. Using Lemma 4.3 it 

is easy to see that  there is a canonical map F*: jtrf~] --4 F.jtxi2~z. Consider the 

functor from ,4 to sites sending :D to the rigid space V and let B and F__(B) be as 
in section 2. It is straightforward to check that :D ~ jtxf~z is a complex in F_(B). 

Therefore, the discussion of section 2 gives us a functor .4 ~ Complg, ~ ~-4 C~, 

such that  C~ represents RF(v, jtxi2~z). Now set 

(4.1) RFri,(X/K)-~,~, := lin~ C ° - (x,x,7~,v), 
v 

where the limit is with respect to inclusion. It is clear that  these complexes are 

functorial with respect to maps of rigid triples and the fact that  by [Ber97, (1.2.5)] 
all maps in the direct limit are quasi-isomorphisms implies that ~;~Frig (X/K)~,p  
indeed represents its namesake in the derived category as required. 1 

Definition 4.6: For each a-scheme X0 the category of r igid d a t a  for Xo, 

denoted 7~7)(Xo), is the fiber of the forgetful functor (T~T -+ Sch) over Xo, 
i.e., is the collection of all triples (X, X, 79) with X -- X0 with morphisms whose 

first component is the identity map of Xb. 

PROPOSITION 4.7: A morphism of rigid data induces a quasi-isomorphism on 
rigid complexes. 

Proof." Suppose first that  the morphism F between (X, 7 )) and (Xr, p,)  actually 

comes from a map of formal schemes F: P -+ p t  sending X to ~1 and inducing the 

identity morphism on X. The proposition then follows from Berthelot's results 

concerning the independence of the rigid complexes of the auxiliary choices. The 
discussion before Theorem 1.6 in [Ber97] shows that F induces the morphism 

on rigid complexes of pairs Rrrig ((X,-~)/K) --~ ~rig((X, X ) / K )  coming from 
the map X --+ XI induced by F. Then Theorem 1.6 in loc. cit. shows that  this 
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morphism is a quasi-isomorphism. For the general case let W be the closure of 

X embedded as the diagonal in X x X ' .  Then (W, P x P ' )  is a rigid da tum 

for X and the two projections Pl and P2 from 7) x 7)' to the two factors induce 
- -  - - !  ! 

maps of rigid data  pl: (W, 7 ) x P ' )  -+ (X, 7)), P2: (W, P x P ' )  --+ ( X ,  7) ), which 

are of the type that  was already proved to induce quasi-isomorphisms. Now 

consider G(x) = (x, F(x)) .  This gives a map of rigid data  (X, 7)) -+ (W, 7 ) x P ' ) .  

This map is a section to Pl and therefore induces a quasi-isomorphism on rigid 

complexes. We can factor F = P2 o G hence the result. | 

Remark  4.8: The proof was inspired by a discussion with Berthelot. 

We are now ready to construct canonical rigid complexes by removing the 

dependency of the auxiliary data. For reasons to be discussed later, this is a bit 

more complicated than it may seem at first sight. The result that  we get is the 

following. 

PROPOSITION 4.9: There is a way to construct the following functors: 

1. A big rigid realization functor 

T~T ---> ComplK, (X, X ,  7)) v---> R.Frig(X/K)~,l ~. 

2. A rigid realization functor 

Sch/~  --+ ComplK, X ~-~ ~Frig ( X / K ) .  

In addition, there are quasi-isomorphisms 

~[ 'r ig(X/K) +- ~r ig (X /K)~ ,3v  -+ ~ r i g ( X / K ) ~ , p  

which are functorial with respect to maps of rigid triples (on the left hand side 

we remember only the scheme component of a morphism). 

To prove this proposition, the naive idea would be to produce the rigid complex 

of X by taking a direct limit over all possible rigid da ta  for X.  The problem is 

that  the category of these data  is not filtered (one cannot equalize morphisms of 

formal schemes) and so the direct limit may fail to be quasi-isomorphic to the 

terms of the limit. The solution to this problem is to look at the way Berthelot 

proves that  all possible rigid complexes are quasi-isomorphic and to consider the 

limit only over those morphisms that  show up in the proofs. This implies we 

should take limits over sets of a finite number of objects of 7~:D(X). To handle 

functoriality, however, one needs to consider more objects. 
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Definition 4.10: For a ~-scheme X, the set 79Tx is the set of all pairs (f ,  (Y, P)) ,  

where f :  X -+ Y is a morphism of ~-schemes and (Y, 79) E TZ/)(Y). The subset 

P ' ~ x  contains all pairs where the first component is the identity map of X. 

As usual we ignore all set theoretic problems which can be solved by using a 

particular universe. If we assume that our schemes are quasi-projective we can 

consider only projective compactifications and formal schemes inside a particular 

choice of a projective space avoiding all these problems. 

Definition 4.11: The category S S T x  is the category whose objects are all finite 

subsets of 79Tx and whose morphisms are inclusions. We denote by 8 5 " ~  x the 

full subcategory whose objects are all subsets with a non-empty intersection with 

P x. 
Let g: Z --4 X be a morphism of schemes. There is then a map of sets 

gO: 79Tx --+ 79Tz given by g°(f, (Y ,P))  = ( fog,  (Y, 79)). Clearly (gh) ° = h°og ° 
for any two composable morphisms g and h. The map gO induces a functor, still 

denoted by gO, from $ S T x  to SETz ,  by sending A C 79Tx to g°(A) c P T z .  

Notice that  this functor does not send $ $ ~ x  to $ $ ~ z .  

From now on it will be more convenient to denote elements of P T x  by letters 

like a and to denote the associated auxiliary datum by (fa, (Y~, 79a)). This also 

allows us to have multiplicities by associating the same data to different elements. 

LEMMA 4.12: For A E 8£T°x consider the formal scheme 79A :=  HaEA 79a. Let 

"XA be the closure of the image of X under the map X -+ YIaeA Ya given by 
jA(x) = (fa(x) E Ya)a. Then jA: X --~ X A i8 an open immersion and 79A 

is smooth in a neighborhood of X .  Thus (XA, 793) E Til)(X). When A C 

B, the natural projections -XB -+ XA and 79B -+ 793 induce a map or rigid 

da ta  (--)ff B, 79B) ~ ('X A, 79A) and the induced morphism ]t~rig(X/K)-~A,TP A 

~'~rig (X/K)-~B,1~ B i8 a quasi-isomorphism by Proposition 4.7. 

Proof: The only thing one needs to remark is that the assumption that A 

includes at least one pair (id, (?, ?)) guarantees that the map X --4 XA is an 

open embedding. | 

To simplify notation, we will now define 

:=  zri= 

This is then a covariant functor S E ~ x  -+ ComplK and all morphisms of 

complexes one obtains are quasi-isomorphisms. We will also need to consider 
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the following more complicated situation. Suppose there are sets PT'x and 

P ' ~ x '  with a projection map II: PT'x --~ P T x  sending P ' ~ x '  to T " ~  x .  Then for 

a E PT'x  we can define Ya := YII(a), "Pc : :  "Pll(a) and define XA and PA for A C 

PT%  in the same way as before. We obtain a functor .Tx: ,SgT'p,_¥ --+ Compl K 

as before, where 8£7-~, x denotes the obvious construction. For A E 8$7"~, x the 

canonical projection H: A --+ II(A) induces canonical maps, "diagonals on identi- 

cal elements", AA: (Xn(A), PrI(A)) --+ (XA, PA) which by Proposition 4.7 induce 

quasi-isomorphisms on rigid complexes: 

(4.2) RPrig (AA): ~'x (A) --+ 3cx (II(A)). 

Going to the limit we obtain a map, which is again a quasi-isomorphism as in 

both limits all maps are, 

(4.3) A: ~ 3Zx(A)--+ fi_~ JZx(A ). 
AeSE~x AeS~% 

Definition 4.13: We define the rigid complex 

RFrig ( X / K )  := ~ ~rx (A). 
AESET°x 

Since S£7"°x is clearly filtered tl~is complex is quasi-isomorphic to each of the 

complexes in the limit. 

When given a map g: Z --+ X and sets B E $£T°z and C E $ £ ' ~ x ,  the map 

gO: C --+ B tO g°(C) induces a projection PBUgO(C) -~ PC which is compatible 

with the map g in the obvious way. The induced map JZx(C) -+ JZz(B U g°(C)) 
we denote by gO. 

PROPOSITION 4.14: For any map of to-schemes g: Z -+ X there is a unique map 

g*: Rl~rig ( X / K )  -+ ~[ ' r ig  (Z /K)  making the following diagram commute, 

l in}~x(C)  g* > lin} ~ z ( B )  
C B 

(B,C)~-+C l (B,C)~-+BUg °(C) l 
lin} :Tx(C) go> ~ 3:z(BUgo(C)) 

(B,C) (B,C) 

where in this notation one takes the limits over B E S£7-°z and C E S£7-°x . For 

any two composable morphisms W h > Z g ) X we have (gh)* = h* o g*. 

Proof" The existence and uniqueness of g* follow immediately if we show that 

the vertical maps in the diagram are isomorphisms (not just quasi-isomorphisms). 
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In fact, it is enough to show that for the left vertical map. Both maps are induced 
from the indicated functors between the index categories and both functors are 

easily seen to be final, hence the result. To show the compatibility with compos- 

able maps consider the following diagram whose commutativity is obvious, 

lin} .,tCx(C) go> lin~ .T'z(BUg°(C)) h° > ~ .~w(A Uh°(B)U(gh)°(C)). 
(A,B,C) (A,B,C) (A,B,C) 

(gh) °. 

The result now follows by checking that each of the arrows in the diagram is iso- 

morphic to the corresponding arrow between the rigid complexes, i.e., by checking 

the commutativity and the fact that the vertical arrows are isomorphisms in the 

following diagrams: 

lin} :fx(C) go 
(B,C) 

( A,B,C)'-'e( B,C) l 

(A,B,C) 

> lin} $'z(B U g°(C)) 
(B,C) 

A,B,C)'--',(B,C) l 

, ~ ~z(BUg°(C)) 
(A,B,C) 

.Tz(B) 
(A,B) 

( A,B,C)~+( A,BUg ° ( C) ) I 

~z(B U g°(C)) 
(A,B,C) 

h ~ . > lin} .~w(AUh°(B)) 
(A,B) 

( A,B,C),-.e( A,BUg ° ( C) ) l 

h°.> ~_~ "~w(AUh°(B) U(gh)°(C)) 
(A,B,C) 

and 
L_~ J:x(C) (ghr. . ~_~ .rw(Aog°(C)) 

(A,C) (A,C) 

(A,B,C)~(A,C) l (A,.,C)~(A,C) l 
lin} .~x(C) (gh): ~ .T'w(A O h°(B) U g°(C)). 

(A,B,C) (A,B,C) 

This completes the construction of the functor ~Fr ig .  The following lemma is 

obvious. 

LEMMA 4.15: In the situation described before (4.2) suppose we have a map 
g~: 7)T'x -~ PT'z compatible with the map gO and preserving the 0 subsets. 
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Then we obtain a map g'* between the obvious complexes compatible with the 
maps ]Rrrig(AA). For composable maps g, and h' we have (g'h')* = g'* o h'*. 

Suppose now that we have a fixed rigid triple (X, X, 7)x). Consider then the 

set 7)Tx,X,px of all morphisms of rigid triples from (X, X, 7)x) to another rigid 

triple and the subset 7)T°x,~,px consisting of the identity morphism. There 

is then a canonical forgetful projection II: 7)Tx,-)~,~ × -+ 7)Tx  and of course 

II(7~x,X,~,  x) C P ~ x .  Therefore we can use the considerations preceding (4.2). 

In particular we can define a category S£'~x,X,~, x in the obvious manner. 

Definition 4.16: We define 

~.Prig(X/K)-~,px : =  l in~ ~ x ( A ) .  
A e S £ T  ° _ 

X , X ( P  X 

We can now check that  with this definition Proposition 4.9 holds. The func- 

toriality and the natural transformation to the complexes RFrig ( X / K )  are an 

immediate gpplication of (4.3) and Lemma 4.15. Suppose A E ,SCT°x,X,~,x 

and consider the rigid datum (XA,7)A) defined in Lemma 4.12. We define a 

map of rigid data (X,  7 )) --+ (XA, 7)A) as follows: By definition there is a strict 

neighborhood U of ]X[v in ]X[~, and, for each a e A, a map of rigid spaces 

Fa: U --+ (~Pa)g which maps ]X[~, to ]Y~[~,o and is compatible under the spe- 

cialization map with f~: X -+ Y~. The product of these maps gives a map 

F: U --+ (7)A)K whose restriction to ]X[~, lands in ]jA(X)[p A and is compati- 

ble under the specialization map with jA hence is a morphism of rigid data. It 

induces a quasi-isomorphism .Tx (A) -+ RFrig (X/K)-~,px.  These maps are com- 

patible with the maps in 887-°x,-Z,px . Going to the limit we obtain the desired 

m a p  RFrig(X/K)-R, p --+ P~[~rig(X/K)-~,p and it is easy to check that it has the 

required naturality. This completes the proof of Proposition 4.9. 

Remark 4.17: One might hope that maps induced by morphisms of rigid triples 

on the complexes P-~.Frig(X/K)~,p will be compatible with the maps between 

the RFrig ( X / K ) .  Unfortunately we do not know how to prove this and at the 

moment we do not believe this to be true. The heuristic reason is that  the 

complexes RFrig (X/K)-~,p have no reason to be very "big" in general. On the 

other hand, a compatibility like we suggested would mean that all pullbacks of an 

element by maps of rigid triples have to map to the same element in ~J~rig (X/K), 
which seems implausible. We will be satisfied instead with the situation described 

in Proposition 4.9. 
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Definition 4.18: Let X° be a simplicial a-scheme. By applying in each compo- 

nent of X,  the functor RI'~ig (? /K) we obtain a cosimplicial object in the category 

of complexes of K-vector spaces. We define RI'rig ( X , / K )  to be the total complex 

of the associated double complex. 

This construction is functorial on the category of simplicial a-schemes. We 

have the usual spectral sequence: 

PROPOSITION 4.19: Let X .  = (Xn)neZ>o be a simplicial a-scheme. Then there 

exists a spectral sequence 

Ei2,J = H~ig(Xj/K ) ~ H~+J(X°/K). 

PROPOSITION 4.20: Let X be a a-scheme and let Ho --+ X be the covering 

associated to a finite Cech covering of X (we view X as a simplicial scheme which 

is X in each degree). Then the canonical m a p  Rrr ig (X/K ) -+ ~I'rig(L(,/K ) is a 

quasi-isomorphism. 

Proof: Let the Cech covering be {U1,. . . ,  U~}. Then 

.n= II v.. 
II]=n-I-1 i e I  

We choose a compactification j: X --+ X and an embedding X ¢-~ P. This then 

defines a compactification UI -4 X -+ X ,  denoted j i ,  for each UI and we thus 
get a rigid datum (X, j l , P )  for each UI. The identity map on P defines, for 

every morphism UI -+ Uj that appears in the definition of Ho, a map compatible 
with this morphism. It follows that NI'rig (LI./K) is quasi-isomorphic to the total 

complex of the double complex 

RI'(IX[-, JlareE ). 
[ l l =n+ l  

It follows from [Ber96, Prop. 2.1.8] or [Ber97, 1.2.ii] that this last complex is 

quasi-isomorphic to NF(]N[~, jtf~N[~ ) and hence t o  RFrig(X/K ). 1 

We state 4.21, 4.22 and 4.23 below for schemes, but they immediately extend 

to simplicial schemes as well. 

PROPOSITION 4.21: Let 12 -4 121 be a finite map of discrete valuation rings where 

V' has residue field a t and fraction field K '  and Iet X be a a-scheme. Then there 

is a canonical base change map 

K'  ®K RI'~ig(X/K) -4 NF,ig (X ® al /K') ,  
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which is a quasi-isomorphism. The base change map is functorial in the obvious 

sense with respect to diagrams Y -+ V' -+ V" and commutes with the maps 

induced by morphisms of ,~-schemes. 

m 
Proof'. Let (X, 50) be a rigid datum for X over Y. One obtains a rigid datum 

(X',  5 o') = (X ® ~', 5 ° @v V') for X ® n' over V'. In this situation the proof of 

[Ber97, Proposition 1.8] shows the existence of a map K '  ®g ~ r i g  ( X / K )  X','p, ~ 

~rig ( X  ® ~l/K')-R',p, which is a quasi-isomorphism. One checks that this is 

functorial in rigid triples, so gives rise to the indicated map which is then forced 

to be a quasi-isomorphism. The functoriality statements are straightforward. 

1 

COROLLARY 4.22: Suppose n is perfect and recall that Yo is the Wi t t  ring o fn .  

Let a: )20 -+ Vo be the map induced by the p-power map on n. Then there exists 

a canonical and natural a-semilinear map ¢: RFrig (X /Ko)  --+ ~X'rig (X /Ko) .  

[~'x XTC 
Proo~ Let ~r be the projection X --+ n and let X > X ®~,Fr~ ~ be the 

relative Frobenius map. Here the map n -+ n in the last tensor product is 

the Frobenius map of n, i.e., the p-power map. The map ¢ is obtained as the 

composition 

~rig  (X /Ko )  l®id Ko ~cr ~rig (X/Ko) 
base change 

> RPrig(X ®,~,r~ n/Ko) (F~x ×.)* > Rrrig(XlKo), 

where the base change map is with respect to the map a. Naturality is easily 

verified. | 

The following lemma will be needed for the comparison between syntomic 

cohomology and modified syntomic cohomology. Its truth is obtained by a careful 

application of the functoriality properties of the base change. 

LEMMA 4.23: Suppose, under the assumptions of  Corollary 4.22 that n is a finite 

field with q = pr elements, which implies that Frr:  X -~ X is n-linear. Then 

¢~ = (Fr')* as endomorphisms ofRPrig ( X / K ) .  

5. de Rham complexes and comparison 

The next step is to define a de Rham complex. This was already done by Huber 

[Hub95, Chapter 7] so we do not go into all the details. We need to know not 
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only a complex computing de Rham cohomology, but also complexes computing 

all the filtered parts. Here K can be any field of characteristic 0. Let X be a 

smooth K-scheme. A de Rham datum for X is an injection i: X ~-+ Y where 

Y is a smooth and proper K-scheme and D := Y - X is a divisor with normal 

crossings. 

Definition 5.1: To a de Rham datum (Y) and to every k E Z>0 we associate 

a complex, called the k-th filtered part  of the de  R h a m  c o m p l e x  of X with 

respect to the da tum (Y), defined by 

FilkRFdR(X/K)y RF(Y, >~k : =  ~-~Y/K (log D)). 

The k-th filtered part  of the de  R h a m  c o m p l e x  of X is defined by 

Fil k RFdR(X/K) := ~ Fil k ]RFdR(X/K)y, 
Y 

where the limit is over all de Rham data. 

We will write ]~FdR(X/K) for Fil°]~FdR(X/K). Note that  the Fil k, in spite 

of their name, are not subcomplexes of RI~dR (X/K) but there are natural  maps 

(5.1) Fil k RFdR(X/K) -4 ~FdR(X/K). 

The final ingredient needed for the construction of syntomic cohomology is 

a comparison between de Rham and rigid cohomology. Let X be a smooth V- 

scheme with generic fiber XK and closed fiber X~. We will define a functorial 

map in the generalized sense, ~['dR(XK/K) -4-4 ~I~rig(X~/K).  We stress that  

this map is not a quasi-isomorphism in general. First we take the limit over all 

de Rham data . (Y) of the map 

(5.2) ~ ( Y , a ~ , / K ( l o g ( r  - XK)/) -4 W(Y,~, XK/K) 

where X ~  n is the rigid analytic K-space associated with XK [Ber96, 0.3.3], to 

obtain a map RFaR (XK/K) -4 ~F (X~: n, f i e f  ). Now consider a compactification 

X J - -  ~-- ...... ~- X. Let X be the p-adic completion of X. It  is not so hard to see that  

X ~  n is a strict neighborhood of ]X~[~ inside ]X~[~ = X K  n. By (4.1) we have a 

functorial quasi-isomorphism 

a n  " t  • P.r(xK , 3,f~x~o) ~ ~r~g (X,JK)~-~. 
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We have a map 
an • an "t • RF(XK , f lx~)  + II~(XK ,3,~f~x~o), 

which is not a quasi-isomorphism in general. Composing we get a map 

]~.FdR ( X K / K ) -+ ~[~rig ( X,, / K ) ~  ,-X. 

By taking the limit over all X we obtain the required diagram 

(5.3) RFda(XK/K) --+ ~ RFrig(X~/K)~,,,-~ 
"Z 

< ~ lin} ] t~ r ig (X~/K)~  ",~ 
x 

~"  ~'rig(X~/K). 

One checks readily that  the entire diagram is functorial with respect to X. 

Remark 5.2: Note that  the morphisms in the diagrams above are not as innocent 

as they may seem, and most of them are in fact only morphisms in the gener- 

alized sense. For example, let us see how one gets a morphism RF(Z, ~t'z/g) --~ 
]RF(Z an, ~ n )  for a K-variety Z functorial with respect to maps of K-varieties. 

First one resolves ~ a .  in a functorial way with respect to all maps of analytic 

spaces (this will be required later for other comparisons) to get a complex I~.  
• Z * ?~Z Then one gets maps t2z/K -+ u. Ix, where is the map between the analytic 

and the algebraic sites of Z. Now we can use these maps to find resolutions J}  of 
• Z • ~Z/K and L~ of I}  together with maps J} -+ u. L z. The required map can now 

be written as F(Z, J~) -~ r ( Z  an, L~) < N Flzan~ , I*zj.~ If however Z is affine, 

it is easily seen using the discussion in section 3 and in particular Lemma 3.4 that  

this generalized map can be replaced by the map F(Z, Q*Z/K) -+ F( Zan, Q~a.). 

6. S y n t o m i c  c o h o m o l o g y  

We are now ready to define syntomic cohomology. We assume that  ~ is perfect. 

Let X be a smooth V-scheme. By combining (5.1) and diagram (5.3) we have 

a (generalized) map Fil'~RFdR(XK/K) -+ ~(Frig(X~/K). In addition, we have 

a semi-linear Frobenius map ¢: RFrig (x~/go)  --)" ]~Frig (Xt~/Ko). We deduce a 

map 

( ¢  ~rig(X~/Ko) --+ R['rig(X~/Ko))[-1] Cone 1 - - - :  pn 

="+ ]~Frig(X,~/go) ="+ ~Fr ig (X~/K ). 
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Definition 6.1: The syn tomic  complex  of X twisted by n is defined to be 

~(Fsyn (X, n) := Cone ( i  - ~ ) [-l] ;(Rrrlg(X~/K) Filn RFdR (XK /K).  

The i-th cohomology of RFsyn (X, n) will be denoted H~yn(X, n). 

The above construction is evidently functorial in X. We can therefore define 

RFsyn for simplicial schemes as in Definition 4.18. We have the analogue of 

Proposition 4.20: 

PROPOSITION 6.2: Let X be a smooth ])-scheme and let lgo -+ X be the covering 
associated to a finite Cech covering of X.  Then the canonical map ]~syn (X, n) --+ 

RFsyn (Lto, n) is a quasi-isomorphism for any n E Z_>0. 

Proof: Because Rrsyn is defined as an iterated cone, it is enough to check the 

statement of the proposition on each of the components of the cone. But for the 
de Rham components it is well known and for the rigid components it was proved 

in Proposition 4.20. | 

show some of the fundamental properties of syntomic We proceed to 

cohomology. 

PROPOSITION 6.3: 

(6.1) 

There is a long exact sequence, 

i -1 X . n  --+Hrig ( ~/K0)GFll  H ~ I ( X K / K )  ®> i-1 i-1 • .- g~ig (x~/go)~H~ig ( z ~ / g )  

-+ H~y n (X, n) 

-+H~ig(X,~/Ko)@Fil n H~R(XK/K) ®). i H;ig ( X~/ Ko) @Hrig ( x ~ /  g )  
- - ~  . . .  

where the maps (~)and (~are given in the appropriate degrees by 

(6.2) ( x , y ) ~ - + ( ( 1 - C ) x , x - y ) .  

Here, for the second component we have identified both x and y with their images 
H/yn(X, in Hirig(XJK). In particular, i l K  is finite over Ko, then n) is a finite 

dimensional Ko-vector space for every i and n. 

Proof: By writing explicitly the quasi-fibered product in term of cones, one finds 

]~syn (X, n) ~ Cone(RFrig (X~/Ko) (~ Fil n ~ d R  (XK/K) 

--'~RFrig(x,Jgo) • RFrig(X~/K))[-1], 
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where the map defining the cone is given by (6.2) (the reader should compare at 
this point the construction of [Niz97, 2.1]). This immediately gives the result. 
| 

Remark 6.4: Let us consider the special case where X is a smooth K-scheme 

considered as a );-scheme. In this case we have X~ = 0, so ~,Frig (X~¢/?) - 0 with 

? ---- K or K0. The long exact sequence (6.1) shows that 

H~ ~ Hi = ( x / g )  yn (X, n) Fil n R • 

This is perhaps to be expected since this is the "absolute" cohomology for 

varieties over a field. 

DeIinition 6.5: The cup product map on syntomic cohomology, 

U: H~yn(X, n) x HJyn (X, m) --+ -r4i+J( x , -syn it q-//z), 

is constructed as follows: By Lemma 3.2 it is enough to construct a product 

Cone(1 - Cn) x Cone(1 - era) -+ Cone(1 - Cn+m), with ¢,~ = ¢/pn. This is 

achieved by the formula, similar to (3.3), 

(xl, z l )u  (x2, z2) =(~1 u . 2 ,  

(6.3) zl U (7x2 + (1 - 9')¢,n(x2)) 

+(-1 )  deg~l ((1 - ~)~, + ~¢.(z~)) u z2). 

This definition is compatible with the definitions given by Niziot, Kato, Gros 

and many others. 

7. C o n s t r u c t i o n  o f  syntomic regulators 

In this section we construct syntomic Chern classe~, 

~: gp(X) ---> --synT42j-P(~(,--, J). 

The method follows mostly Huber [Hub95, Chapter 18] with some input from 

Gros [Gro90] and Deligne [Del74]. 

The main step in the construction is to repeat the computation of the de Rham 

cohomology of B o G L ,  by Deligne [Gro90, Chapter II] for rigid cohomology. We 

briefly recall the setup from loc. cit., but using the notation of Deligne in [De174, 

6]. 
We will work simultaneously over any of the bases a, Y, ~;0 K or K0, making 

the needed adjustments. If G is an algebraic group (over any of the bases above) 
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acting on a scheme X we let IX~G]. be the simplicial scheme such that  [X/G],~ = 

(G An x X ) / G  where G acts by g. (go , - . . ,  gm x) = (gog-1 , . . . ,  g,~g-1, gx) and the 

face and degeneracy maps are the obvious ones [De174, 6.1.2]. Note that  the quo- 

tients are well defined and in fact there is an isomorphism G ~ x X ~ > [X/G]n 

given by (for example) (g l , . . .  g~, x) ~-+ (1, g l , . . ,  gn, x). 

LEMMA 7.1: Let X be a principal G-bundle over S = X / G .  Then the map 

[X/G]. -+ S induces an isomorphism on rigid cohomology. 

Proof (sketch): If we knew how to write rigid cohomology as a sheaf cohomology 

this would follow from [De174, 6.1.2.2]. We need to check that  what we know 

about  rigid cohomology is sufficient for a proof. Let X .  = cosq(X --+ S). There 

is a canonical isomorphism of simplicial schemes over S, 

X .  ~- [X/C]. 

[De174, 6.1.2.@ If there is a section S --+ X, then it extends to a section s: S --+ 

X .  to the canonical map r :  X° --+ S. It  is well known that  the map s o ~r is 

homotopic to the identity map of X° and this homotopy induces a homotopy on 

the rigid complexes showing the result in this case. In the general case we have 

a finite covering, U = ]__[ Ui, of S such that  the restriction of X to each Ui has 

a section. Let L/o = cosq(U --+ S). An application of the spectral sequence 4.19, 

Proposition 4.20, and the special case of a map with a section discussed above 

now shows that  the cohomology of the bisimplicial set 

(cosq(X x s  ldn -+ ldn))?,n = (cosq(Xm x s  V -+ Xm))m,? 

is isomorphic to the cohomology of/do, hence of S, on the one hand, and to the 

cohomology of X°, on the other hand. | 

Fix N _> n in Z>0. Let E = G~ ¢n and F = G~ N be two vector group schemes 

and let Hom(E,  F)  be the corresponding scheme of homomorphisms. There is a 

filtration of Hom(E,  F)  by open subschemes 

Hom(E,  F)  = Un D U,-1 D . . .  DUo, 

where Ul is defined by the invertibility of at least one n - l minor. 

LEMMA 7.2: The scheme Ut - Ul-1 is a smooth subscheme of H o m ( E , F )  of  

codimension l(1 - n + N).  

Proo~ This is proved in [Gro90, II.2.4] for schemes over )20 but the proof is the 

same in any of the other cases. | 
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The group G = GLn acts on Horn(E, F)  in the obvious manner, preserving the 

filtration by the Ui. The scheme U0 is the so-called Stiefel variety of n-frames on 

F and is denoted by Stief(E, F).  We have 

(7.1) Stief(E, F) /G  TM Grass,~(F), 

where Grass.,~(F) is the grassmannian of n-dimensional subspaces of F.  

PROPOSITION 7.3: The canonical map 

H*ig([nom(E, F) /G] . /K)  -+ H*g([Stief(E, F ) / G ] . / K )  

is an isomorphism in degrees <_ 2(N - n). 

Proof (Compare [Gro90, Corollaire II.2.8]): It is enough to show the same for the 

map induced on rigid cohomology by each of the inclusions [Ul-1/G]o --+ [UJG]o. 
By Lemma 7.2 we see that on the n-th component, [UI/G]~ -[UI-1/G]~ is a 

closed subscheme of [UI/G]~ of codimension l(l - n + N) _> N - n + 1. By 

purity for rigid cohomology [Per97, Corollaire 5.7] the map H[ig([Uz/G]n/K ) --+ 
H~ig([Ul_l/G],~/g ) is an isomorphism if i _< 2(N - n). The result now follows 

from the spectral sequence 4.19. | 

PROPOSITION 7.4: There are canonical classes xi e Fili H ~ t ( B . G L n / K  ) such 
that we have isomorphisms 

(7.2) K[xl , . . . ,x ,~] ~ ,  H~R(B .GL~/K ) ~ ,  H*g(B.GL~/K) .  

I l K  = Ko and we identify the classes xi with their ~mages in//rig, then we have 

¢(x~) = p~x~. 

Proof: 
have a G-equivariant diagram, 

Stief(E, F)  -..... 
where 0 denotes the 0 section to 7r. 

eohomologies, 

H~ig ( [S t ie f (E ,F) /a ]o / I f )  < 

Let • be the one point space. Then B.GL~ = [*/G]o [De174, 6.1.3]. We 

~. Hom(E, F)  
* ~ . 4  

It induces a corresponding diagram of 

H~ig ([Hom(E,F)/G]./If) 

H~ig(B.GLn/K ) " :  
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An easy diagram chase using Proposition 7.3 shows that the left diagonal map 

is injective for i <_ 2(N - n). A similar argument shows the same for de Rham 

cohomology. By Lemma 7.1 and (7.1) it now follows that the two horizontal 

maps in the commutative diagram 

(7.3) H~ig(B.GLn/K) 

T 
• 

) H~ig(Grass,,(F)/K ) 

H R(Crass,,(F)/g) 

are injective for i <_ 2(N - n). The map on the right is an isomorphism since 

Grassn(F) is proper. 

In de Rham cohomology we have a good theory of characteristic classes. Let 

xi • Fili H2~(B .GLn /K)  be the i-th Chern class of the universal bundle. Then 

o~(xi) are the Chern classes of the universal vector bundle over Grassn(F ) and 

it is known that  these generate the cohomology ring of Grassn(F ). It follows 

that c~ is surjective, hence that if i < 2(N - n) all maps in diagram (7.3) are 

isomorphisms. Varying N we find the isomorphisms (7.2). It now follows that  

the properties of the classes xi can be tested in the cohomology of Grassn(F ), 

where they are well known: As Grass n (F) is proper we have an isomorphism 

H~t(Grass,~(F)/Ko ) ~- H2ir(Grass,~(F)/);o) ® Ko, 

under which x~ correspond to the crystalline Chern classes of the universal bundle 

and therefore have the right behavior under Frobenius. | 

We can now define Chern classes in syntomic cohomology. From Proposi- 

tion 7.4 it follows that  B.GL,~ has cohomology only in even dimensions. Using 

the long exact sequence (6.1) we easily obtain an isomorphism 

(7.4) 2i ,,~ H~yn(B°GLn ® ~), i) = {x E Fili H~t(B°GL,~/Ko): ¢(x) = pix}. 

In particular, we see that  the classes x~ of Proposition 7.4 define classes, denoted 

C~, in H2~n(B°GLn ® V, i). Considering the usual inductive system of B°GL,~- 

s, obtained by the inclusions "in the upper left corner" GL,~ -~ GLn+I, we see 

that  the C~ are compatible under the induced maps on cohomology because the 

de Rham universal classes are known to do so. We thus obtained cohomology 

classes Ci in the cohomology of the ind-scheme B°GL which we call the un ive r sa l  

s y n t o m i c  C h e r n  classes. 
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THEOREM 7.5: Let X be a smooth ];-scheme. There exist functorial Chern 
classes 

Kp(X) n2J- p ( -  j), -- yn ,--  , 

s.Ch that  their composit ion with the map  S:y :P(X,i) FilJ 
obtained from the sequence (6.1) gives the usual Chern classes in de Rham co- 
homology. 

Proof: We follow Huber's treatment in [Hub95, Chapter 18]. By [Hub95, Propo- 

sition 18.1.5] (whose proof is also valid in our case) we have an isomorphism 

lin~ rpTot(Z × Z~B.GL(U.) )  ~ ,  Kp(X), 
u. 

where the direct limit is over all finite affine Cech coverings Uo of X. By [Hub95, 

Proposition 18.1.7 b] there are induced maps 

(7.5) Kp(X) -+ ~ ~rpTot(Zo~B.GL(U.)), Ko(X) -+ Z. 
u. 

For simplicial schemes U° and Y., let B(U., II.) be the simpticial cosimplicial 
abelian group which is the Q-vector space generated by Hom(Un, Ym) in degree 
(m, u) and let A(U., Y.) be the associated complex [Hub95, Definition 18.2.1]. 
Summation of pullback maps give a map of simplicial cosimplicial groups, 

B(Uo, Y.) -+ [Hom(RFsyn (Ym, j), RFsyn (Un, J))]m,n, 

where Horn here means in the category of complexes (this is why we insisted 
on defining the syntomic cohomology on the level of complexes). By taking the 
associated complexes and then the total complexes we obtain a map 

(7.6) A(U., ]I.) -+ RUom(RFsy, (Y., j),  RFsyn (Uo, j)). 

In the special case that Y° --- B.GL, we have by [Hub95, Lemma 18.2.4] a map 

~r v Tot(ZooB.GL(Uo)) -+ H-V(A(Uo, B.GL)). 

Composing this with the map induced on cohomology by (7.6) and applying to 
the universal class Cj E H2J(RFsya(B.GL, j)) we get a map 

~r v Tot(Z~B.GL(U.))  -~ S2~V(Uo, j). 

If [7. is as in (7.5), then H2~nv(u°,j) ~- H2~v(x , j )  by Proposition 6.2. This 

completes the construction. The result about the composition with the projection 
to de Rham cohomology follows from the universal case and flmctoriality. II 
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2 j - - i  • The Chern character ch: Ki(X) -+ t~j H~y n (X, 3) is given by 

c h = ~  -~--~fic).(-1)J-1 i (+Rank  if i = j = O ) .  
j>_l 

The Chern character is multiplicative. 

Proof'. Everything is reduced to the properties of the universal Chern classes 

(see for example [Hub95, 18.3]). These properties are deduced in the following 

way. By (7.4), the natural map 2i H~yn(B.GL. ® V,i) -+ H~(B .GL , , /Ko)  is an 

injection. Since this natural map is compatible with cup products by Lemma 3.2, 

all properties of Chern classes for syntomic cohomology can be read off from the 

corresponding results for de Rham Chern classes, which are well known. | 

8. M o d i f i e d  syntomic cohomology 

In this section we define a certain modification of the rigid syntomic cohomology 

of section 6. The difference is that we replace the semi-linear Frobenius by a 

linear Frobenius. This makes the theory easier to compute. For the purpose of 

computing regulators in higher K-theory the modified theory is as good as the 

original one. 

In this section we need the additional assumption that a C/~p. The following 

notion is due to Coleman. 

Definition 8.1: Let X be a ~-scheme. A F r o b e n i u s  e n d o m o r p h i s m ,  ~o: X --+ 

X,  of degree q -- p~ is any a-endomorphism of X obtained in the following way: 

Let X t be an Fq-scheme and let a: X ~ ~ X ~ ®Fq ~ be a R-isomorphism. Then 

qo = a -1  o (Fr ~ ® ida) o a. 

It is clear that if qo is a Frobenius endomorphism of degree q then ~o k is a 

Frobenius endomorphism of degree qk. 

Definition 8.2: The category of Frobenius endomorphisms of X is the category 

whose objects are Frobenius endomorphisms ~o: X ---> X. There is a unique 

morphism between ~o and ~o k for any k _> 1. 

LEMMA 8.3: The category of Frobenius endomorphisms of X is filtered. 

Proof'. It is not hard to see that sufficiently high powers of any two Frobenius 

endomorphisms become identical. | 
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Fix an integer n. We associate to each Frobenius endomorphism a certain 

complex, in such a way that  we get a functor on the category of all Frobenius 

endomorphisms. To ~ of degree q we associate the complex 

Cone 1 - - - :  NFrig(X/K) --+ NI'rig(X/K) [-1]. qn 

TO the morphism ~o ~ ~o m we associate the map of cones induced by the 

commutat ive diagram 

(8.1) Rrrig(x/g)  rig(X/K) 

=I 1 
Rrr  (x/g) 

Definition 8.4: The m o d i f i e d  s y n t o m i c  c o m p l e x  associated with a Frobenius 

endomorphism ~ is the complex 

l i~(X,n)~o := Cone 1 - ~ [--1]xer~dX~/K) FilnlI~'aR(XK/K), 

where q is the degree of qo and the cone is the one discussed above. The m o d i f i e d  

s y n t o m i c  c o m p l e x  of X is 

]t~ms(X,~t ) : 1 ~  ~,Fms(X,n)~ , 

where the direct limit is over the category of all Frobenius endomorphisms and 

the connecting maps are the ones defined above. The cohomology of the modified 

syntomic complex is called m o d i f i e d  s y n t o m i c  c o h o m o l o g y  and denoted by 

H~s(X, n). 

LEMMA 8.5: The modi~ed syntomic complexes, and hence the moditied syntomic 
cohomologies, are functorial. 

Proof." One need only observe that  any morphism of varieties over n is already 

defined over some finite field, which implies that  for any morphism f :  X --+ Y 

and for a cofinal collection of Frobenius endomorphisms ~: Y~ --+ Y~ there is a 

Frobenius endomorphism ~t: X~ -~ X~ making the obvious diagram commute. 
| 

Most of the basic properties of the modified syntomic cohomology are concen- 

trated in the following proposition. 
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PROPOSITION 8.6: 

i .  There is a canonical quasi-isomorphism, 

(8.2) 

] [~ms(X,n)  ~ l i~  Cone - - - :  Fi lRFdR(XK/ K)  -+ Rrrig(X/K -1 ] ,  q~ 
~o 

where the limit is over all Frobenius endomorphisms ~, the notation 1 - 

~ , /qn  stands for this map composed with the map ~ d R  --+ ]~rig and 

the transition maps are constructed using a diagram analogous to (8.1). 

Furthermore, i f  ~ is any fixed Frobenius endomorphism of degree q, then 

we also have the quasi-isomorphism 

(8.3) ~Fms (X,  ?~) ~-~ 

lin~ Cone 1 - \q-~,l : F i l R F d R ( X K / K )  --+ NI'rig(X/K) [-1].  
k 

2. I f  ~ is a finite field, then there is a canonical and functorial map 

F_,: ~"syn (X, n) --+ ~d"ms (X, n). 

(8.4) 

3. There are canonical and functorial maps 

RFrig(X~/K)[-1] --+ ~Fsyn(X,n) ,  RFrig(X~/K)[-1] --~ RI~ms(X,n). 

When ~ is a finite field these maps are compatible with the map E. These 

maps  induce isomorphisms, 

(8.5) H~yn(Z, n) ~- H~i-gl(x~/g) /Fi l"  H ~ t l ( X K / K ) ,  

and, if  n is finite, 

(8.6) H~ms(X, n) ~- Hir~g I ( X J K ) / F i l  '~ H ~  1 ( X K / K ) ,  

(at  least) in the following two cases: 

• X is p roper  over ~ and 2n ¢ i , i  - 1,i - 2, 

• X is a/~ne and n > i > reldim X.  

In particular, i f  in either of these cases ~; is a finite field, then E induces an 

isomorphism on degree i cohomology. 
4. Suppose V' is a finite extension of V with field of fractions K '  and let 

X '  ---- X ®v V'. Then there exists a canonical base change quasi-isomorphism 

RFms (X, n) ® n  K '  ~ ~'~ms ( x l ,  n). 
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5. There are cup products in modified syntomic cohomology compatible with 
the products in syntomic cohomology under the map =- and also compatible 
with base change. 

Proof: 1. Let 99 be a Frobenius endomorphism of X~. In Definition 8.4 of 

RFms (X, n)~ we may replace the quasi-fibered product x by an ordinary product 

because the cone on the left hand side surjects on ~ r i g ( X , J K ) .  The resulting 

complex is easily seen to be isomorphic to the level 99 complex of (8.2). The 

second part of the assertion follows because for a fixed ~ the collection of powers 

~k is cofinal in the category of Frobenius endomorphisms. 

2. We first construct a map 

Cone(1 - ¢/pn: ]1~d~rig (X~//K0) ©) _4 Cone(1 - 99"1q~: ]l~Frig (X~//K0) ©) 

for some Frobenius endomorphism q© (the notation © means that the map is 

from the complex to itself). Suppose ~ is a finite field with q = pr elements. 

Then q© = Fr r is a Frobenius endomorphism of X~ and by Lemma 4.23 we have 

cr __ 99, on ]l~Frig(X~//K0). It follows that we can define the required map by 

using a diagram similar to (8.1). This map can then be composed with the 

exte14sion of scalar maps to give a map 

Cone(1 - ¢/pn: F~Frig(X,~/Ko) ©) --'+ Cone(1 - 99"/q": ]RF.,:ig(X,JK) 0). 

By the construction of the (modified) syntomic complexes we now obtain a map 

]l~Fsyn (X, n) -~ n~d~ms(X, Tt)~ by taking the identity maps on the other compo- 

nents of the quasi-fibered product. This map we may compose with the map 

to the limit on all Frobenius endomorphisms to complete the construction. For 

schemes over ~ our particular 99 commutes with all maps and this easily gives 

functoriality. 

3. The maps (8.4) are instances of the map (3.2) (or a limit of a map of this 

kind for modified syntomic cohomology) with X ° = Cone ( 1 -  qo*/q n) [-1] for 

the left hand map, X" = C o n e ( 1 -  ¢ / p " ) [ - 1 ]  for the right hand map and 

Y" = Fil '~ ]1~rdR (XK/K), Z ° = ]1~l~rig (X~/K). The compatibility with the map 

E is clear since it is induced by a map between the components which is the 

identity on the Z ° component. We show that the maps (8.4) induce isomor- 

phisms on cohomology in the stated cases for syntomic cohomology, the proof 

for modified cohomology being essentially the same. We abbreviate Cone for 

Cone(1 - ¢/pn)[-1]. From the construction of syntomic cohomology as a quasi- 
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fibered product,  which is again a cone, we get the following long exact sequence, 

• .. ~ H i - l (Cone)  ¢ Fil n H~RI(XK/K) ~ H ~ I ( X , J K )  --+ H~yn(X, n) 

--+ Hi(Cone) @ Fil n H~R(XK/K ) ~ H~ig(X~/g) --+.... 

I t  follows tha t  the map H~I(X,JK)/Fil'~H~dRI(XK/K ) --+ H~syn(X,n) is an 

isomorphism if H i - l ( C o n e )  -- Hi(Cone) = 0 and the map Fil n H~R(XK/K ) 
H~ig(X,JK ) is an injection. This last requirement holds in the cases considered 

because in the proper case H~R(XK/K ) ~- H~ig(X,~/g ) and when n > r e ld imX 

we have Fil n H~IR(XK/K ) = O. The long exact sequence for the cohomology of 

Cone, 

• .. --4 H ~ 2 ( Z J g o )  1-~>lp)" H~g2(z~/go) ~ Hi_l (Cone  ) 

-+ H~I(X~/Ko) 1-¢b/Pn H~' (X~/Ko)  -+ Hi- l (Cone )  

----y H~ig(Xjgo) 1-C/p>" H~ig(Xa/go ) - ~ ' " ,  

shows tha t  the i-th and i - 1-th cohomologies of Cone vanish when 1 - ¢/p'~ is an 

isomorphism on H, ig(X~/Ko) in degrees i, i - 1 and i - 2. This now follows from 

the theory of weights: By [CIS98] and [Chi96] the K0-1inear Frobenius, which is 

a power of ¢, has weight j when acting on H{ig(XJKo ) when X is proper and 

has mixed weights between j and 2j in general. In the proper case it follows that  

if 2n ¢ j for j = i - 2, i - 1 and i, then the operator ¢/p'~ has no fixed vector 

on HJrig(X,~/Ko) because some power of it does not. It  follows that  1 - ¢/pn is 

injective, hence bijective, on the degree i - 2, i - 1 and i cohomologies. In the 

second case this is no longer true a-priori for j = i but H~ig = 0 because X is 

affine and i > reldim X. 

4. Apply base change (Proposition 4.21 for rigid cohomology) in each component. 

5. The construction of the cup product is almost identical to the one we did for 

syntomic cohomology. The cup product on Cone(1 -~p*/q'~: ~(['rig(X~/K) O) 
is given by the formula (6.3) with ¢,~ = (p*/q'~. One then needs to check that  

these products are compatible up to homotopy under the transition maps. This 

can be done by a direct laborious computation. A much more conceptual and 

general way of understanding this is given in [Bes97]. This type of compatibility 

also implies that  the product is compatible with the map ~. Compatibili ty with 

base change is clear. | 

Remark  8.7: 
1. We expect the base change isomorphism of Proposition 6.4 to exist for 

infinite extensions as well, at  least on the level of cohomology. 
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2. Using the model (8.3) for modified syntomic cohomotogy it is easy to see 

that  the cup product is given in level k by the formula (6.3) with Cm being 

(¢p* / qn ) k composed with Fil n R['dR ( X K / K ) -"+ RFrig ( X~/  K ). 
3. Suppose K = Ko. An argument similar to the proof of Proposition 8.6.1 

shows that 

~ 'syn (X, n) -~ Cone(Fil" RFdR (XK/K)  1-¢/p" ~J~rig (X ,JK) ) [ -  1]. 

This gives rise to a long exact sequence 

. . . -+ Filn H ~ I ( X K / K ) 1 - ¢ / ~  H~gl(x,~/K) ~ Hs~yn(X,n) 

-+ Filn H~R(XK/K ) 1-¢/p" H~is(X,jK) ~ . . . .  

In the cases discussed in Proposition 8.6.1 this reduces to a short exact 

sequence 

0 -+ Fil n H~Ra(XK/K) 1-4,/p" H~gl(X,~/K) ~ H~yn(X, n) --+ 0. 

The isomorphism (8.6) is induced by the map sending x E H~gl(X,~/K) 
to the image in H~syn(X,n) of (1 - ¢/pn)x. A similar analysis applies to 

modified syntomic cohomology. See Proposition 10.1.3 for a special case. 

When we compose the syntomic Chern classes with the canonical map of co- 

homology theories E: Hsyn -+ Hms we obtain modified syntomic Chern classes 

and Chern characters. Alternatively, one can construct these directly using the 

same techniques as before and universal Chern classes which are the images of 

the syntomic ones under the map E in the cohomology of BoGLn. This makes 

the following lemma evident. 

PROPOSITION 8.8: The modified syntomic Chern classes behave well under base 
change, i.e., when X is a );-scheme, )2' is a finite extension of V and X ' /V '  is the 
scheme obtained by base change to V', there is a commutative diagram 

Kp(X) c~) H2J-p(X J) 
m s  \ ' 

e~ 
gdx') H2;-p(X',j). 
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9. C o m p a r i s o n  w i t h  o t h e r  c o h o m o l o g y  t heo r i e s  

In this section we compare our constructions with some other versions of syntomic 

cohomology and regulators and then also with ~tale cohomology and regulators. 

As mentioned in the introduction, in [Gro94], Gros defines, for X smooth over 

1} and K -- K0, rigid syntomic cohomology Hi(X,s(n)x/g,rig). When X is 

affine he further defines higher Chern classes into this cohomology. The main 

difference with our construction is that no attention to log singularities is given. 

We generalize his construction to the case K # K0 as follows. 

We first define complexes Fil m ~Frig (X~/K) following [Gro94, 1.3.2]. As many 

of the details are similar to the constructions in sections 4-6 we allow ourselves 

to be a bit sketchy here. Let j:  X ¢--+ X be a compactification of X over 1} and 

let X ¢--+ Y be a closed embedding of X into another 1}-scheme which is smooth 

in a neighborhood of X. We have XK n C ]X-,~ [~. 

Definition 9.1: The n-th filtered part of the rigid complex of X~ relative to the 

data of X and Y is defined as 

FilxRFrig(X~/g)~,v  := lir~ RF(U,j~ Fi lx f t~) ,  
u 

where the limit is over all strict neighborhoods of U of ]X~[? in ]X~[? and 

F i lx  f~ ~ := I n _-+ I n - l ~ b  --4 In-2~tb --4 . . . ,  

with I the ideal defining XK n in ]X~[? and letting Ik = (1) for k < 0. 

By results of Berthelot [Gro94, 1.3.3, 1.3.5] if we fix X then a smooth mor- 

phism of Y's will induce a quasi-isomorphism on these complexes, and if we 

forget Y and view the new complex as well defined in the derived category then 

a proper morphism of X's  will again induce a quasi-isomorphism. Thus one 

can repeat the methods of section 4 and obtain complexes Fil~ ~.Frig (X~/K) 
which are functorial complexes in X with natural maps (in the generalized sense) 

Fil~ ~Frig(X~/K ) -4 ~Frig(X~/g) for each n. 

Remark 9.2: Since we are assuming that X is smooth, we can always find at 

least one X and Y by just taking Y = X. Note, however, that we could be 

in this situation in general if we assumed that X was quasi-projective or if we 

generalized our construction to allow local embeddings of a covering of X. Thus 

the entire theory can be developed for non-smooth schemes. 

Definition 9.3: We define complexes ]~syn(Z, n) and RFms(X, n) by replacing 

in the definition of ~Fsyn (X, n) and RFms (X, n) the map Fil n ~rdR (XK/K) --+ 
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~Frig (X,~/K) with the m a p  Fil~: ]~rig (X,~/K) -+ ]~Frig (Xtc/K). The  associated 

cohomologies will be denoted b y / 4 ~ y . ( X ,  n) and/4~,~(X,  n). 

PROPOSITION 9.4: Assume K = Ko. Then there exists a canonical isomorphism 

/~r~y.(X, n) ~ H i ( X ,  s(n)X/K,rig), where the latter cohomology is the one defined 
by Gros. 

Proof:  As in R e m a r k  8.7.3, when K = K0 the construct ion of ~Fsyn(X , n) 

simplifies to Cone(Fil~x ]RFrig(X~/g)1-¢/P~ ~ ~Fr ig (Xa /g ) ) [ -1  ]. By choosing 

par t icular  da t a  this is easily seen to be quasi- isomorphic to the construct ion 

of Gros.  | 

PROPOSITION 9.5: There is a functorial commutative square of maps 

~syn(X,n)  > ~Fsyn(X ,n) 

]~Fms (X, Tt ) - ]~ms (X, Tt). 

In particular, we obtain a functorial map of cohomology theories Hsyn(X , n) --+ 

H* (X, s ( n ) X / K , r i g  ) . 

Proof: The  left vert ical  m a p  has already been defined and the right vertical  m a p  

is defined in exact ly  the same way. To construct  the horizontal  maps  one only 

has to define maps  Filn]I~dR(XK/K)  --+ Filnx~Frig(Xtc/K). To tha t  end, let 

j: X ~-+ X be a compact i f icat ion of X and let i: XK ~ Y be a de R h a m  d a t u m  

for XK. Consider U X~(". Then we have • n , o/>- = Fll~-f~u = ~ u  " We can therefore 

obta in  a map ,  in a similar manner  to (5.2), 

f~Y/g (log(Y - RF (Y, z, f l x ~ / K )  

- ~  ]I~F( X K  ' "~XK / K  ] --~ 

--+ RF(U, 3~u'?r'>~"~) __+ Fi lx  RF fig ( X , j  K )~,x .  

Taking limits gives the required map.  | 

The  following result will be needed in section 10. 

LEMMA 9.6: The restriction of  Hm~(X,n  ) i  ~ / : /ks(X, n) to K e r ( H m s ( X  , n) -+ 

H ~ R ( X K / K ) )  is injective if n >_ i 
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Proof: It is enough to show this at each finite level, so we may fix a Frobenius 

endomorphism ~o and work with the associated modified complexes. We have the 

following commutative diagram with exact rows, 

F i l n H ~  1 (XK/K)  ~--~-->'H~I(X,~/K) 

Fil m , 

i HL(X, 

> H L ( x ,  n ) .  

> FilnH~R(XI,:/K) 

where the map (D is 1 - ~o*/q'L Under our assumption Fil n H ~ I ( X , J K )  = O, g 

so the result follows from an easy diagram chase. | 

In [Niz95] and [Niz97] Niziot defines another version of syntomic cohomology, 

this time based on the convergent cohomology of Ogus. This amounts to ignoring 

both logarithmic singularities and overconvergent singularities. We will need one 

of the versions of this definition. 

Definition 9.7: Niziot [Niz97, Proof of Lemma 2.1]. Let X be a smooth quasi- 

projective );-scheme. The f-cohomology of X with values in the sheaf ]C(n), 

H~ (X, K:(n)), is defined as the cohomology of the complex 

RF(X, $° (n)) := 

Cone(H( (X~/)2O)conv, ]Cx~/vo) • H( (X~/'}))conv, F~¢) 

--+ H((X,~/~o)conv, ]Cx~/Vo) ~ H((XJV)conv, K:X~/V))[-1]. 

Here, H denotes the derived functor of the global section functor, ICx~/v is the 

canonical sheaf on the convergent topos and F~ is its standard filtration. The 

map defining the cone is given by 6.2. 

PROPOSITION 9.8: There is a canonical map 

Rrsyn(x,  n) s" (n)), 

which is an isomorphism if X is proper. 

Proof: It follows from [Ogu90, Theorem 0.6.6] that there are functorial maps 

(in the derived category) P~Frig(X~/L) --4 H((X,JOL)¢onv,ICX~/OL) for L = K 

or K0, which are quasi-isomorphisms if X is proper. One can check that  these 

maps further induce maps Ell n RFris(X~/K) ---> g((x,J'V)conv, F~). As in the 

proof of Proposition 6.3 we see that  RFsyn(X, n) can be written as 

RFsyn (X, n) ~- Cone(Rrrig (X,JKo) @ Fil m ]l~I~rig (X,c/K) 

~RF~ig (x~/go) ~ RF~ig (x~/g))[-1],  
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which makes the existence of the required map obvious. When X is proper the 

map is a quasi-isomorphism because each of its components is. | 

PROPOSITION 9.9: For X smooth and quasi-projective there is a functorial map 

of cohomology theories H*yn(X , n) --+ H~(X, lC(n)) which is an isomorphism 

when X is proper and which commutes with Chern classes. 

Proof: To construct the map we simply compose Hsy n --5 /~syn -'4 Hr. We have 

shown both maps to be isomorphisms when X is proper. To show compatibil- 

ity with Chern classes it is enough to check that the universal Chern classes in 

the cohomology of B .GLn  are the same. But we know that BoGLn only has 

de Rham, rigid and convergent cohomologies in even degrees. This implies that 

the universal Chern classes coincide if their projection on de Rham cohomol- 

ogy do. But these projections are simply the corresponding universal de Rham 

Chern classes. Indeed, this is true by construction for Usy n and for H I it follows 

from [Niz97, Lemma 2.2]. | 

Finally, the comparison with Niziot's cohomology allows us to connect 

our version of syntomic cohomology with ~tale cohomology. By [Niz95] and 

[Niz97, Cor. 3.1] there is a functorial map of cohomology theories H~ (X, ~(n))  --+ 

Het(Xg,  Qp (n)) which is compatible with Chern classes. Here ~t denotes contin- 

uous ~tale cohomology as defined by Jannsen [Jan88]. 

COROLLARY 9.10: For X smooth and quasi-projective there is a functorial map 

of cohomology theories Hsyn(X , n) -+ H et ( X K , Qp ( n ) ) which is compatible with 
Chern c/asses. 

To make the relation with ~tale cohomology even clearer, we note the following 

proposition. 

PROPOSITION 9.11: Let X be smooth and projective. For atl versions of 

syntomic cohomology (which are all the same in this case) the composed map 

H ~ I ( X K / K ) / F i l ,  H ~ I ( X K / K )  ,~ ,-1 • n = H;ig (X /K)/Fll H hl(XK/K) 

H#=(X,n) + Hh(XK,Qp(n)) HedX ,%(n)) 

is O, where the last map comes from the Hochschild-Serre spectral sequence. This 

and the spectral sequence in turn give a map 

H~R 1 ( X K / K ) / F i l "  H ~  1 ( X K / K )  -+ H I (Gal( /~/K),  Het l (XR,  Qp (n))). 
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This map is the Bloch-Kato exponential map associated with the Gal( /~ /K)  

representation tt~t I(XR, Qv (n) ). 

Proof: This is an immediate consequence of [Niz99, Theorem 5.2] together with 

the observation that the map l: H}(I ; ,D)  -+ HI(GK, L(D)) for an associated 

isocrystal D appearing there is just the Bloch-Kato map corresponding to the 

Galois representation L(D). The same result is proved by NekovAi in [Nek98] 

and one need only assume properness instead of projectiveness. We did not try, 

however, to compare his version of syntomic cohomology with ours, though they 

are surely identical in the proper case. | 

10. Regulators for functions 

In this section we consider the cohomology H~ms(X, i) (so the degree equals the 

twist) of a smooth affine );-scheme X = Spec(A). Fix a compactification j:  X ~-~ 

X over V. Let P = X. We get a rigid datum (X~, 7)). By the proof of proposition 

1.10 in [Ber97] we see that the map 

~4t,K := lin~ F(U, gt~) --+ RFrig(X~/g)-R~,p 
U 

is a quasi-isomorphism, where the limit is over all strict neighborhoods o f ] X ~ [ x .  

We remark that  ~t'4 t,K is in fact the complex of differentials of the dagger algebra 

A t used in the Monsky Washnitzer cohomology [MW68, vdP86], but we will not 

need this fact here. Now fix a Frobenius endomorphism ~ of degree q of X~. It 

follows from lifting theorems for dagger algebras ([Co185, Thin A-l] or [vdP86, 

Thm 2.4.4.ii]) that there is a lifting ¢ of ~ to the dagger algebra A t. This implies 

that there are strict neighborhoods U ~ C U" and a map ¢: U ~ --+ U" whose 

reduction is ~. It follows that (T, ¢) defines a map of the rigid triples from 

(X~,X~, P)  to itself. Using Proposition 4.9 we therefore obtain a commutative 

diagram 

~At ,K 

~ r i g ( X ~ / K )  ~ " ~ r i g ( X ~ / K ) ,  

where the vertical maps are (generalized) quasi-isomorphisms. 

Now choose any de Rham datum XK ¢-+ Y for XK. By Hodge theory 

[De171a, Corollaire 3.2.13.ii] we see that the space 

~i(XK/K)log := H°(Y, 12iy/K(log(Y - XK))) 
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is independent of the choice of Y and is isomorphic to Fil ~ H ~ R ( X K / K  ) ---- 
H (Y, f~y/g(log(Y - Xg)>). 

PROPOSITION 10.1: Let X and ¢ be as above. 
1. There is a canonical isomorphism 

(10.1) 

Hires(X, i) ~- lin~ {(w, h): w e ~i(Xg/K)log,  
k 

( - oi-1 /zoi-2 dh = 1 w}, h • ooA,,~,~ooA,,~, \ - ~ ]  ] 

where we abusively identified w with its image in fPAt,K" The connecting 
map between level k and level km is given by 

m-1 

2. The cup product i H~ns(X,i ) x HJEs(X,j) -+ H~+J(X,i + j) is given in level 
k by the formula 

(5d1, hi)  (--J (022, h2) = (wl A w2, 

( (10.3) hiA ~ f + ( 1 - 7 )  ~- w2 

+(-1)i  ( ( ( 1  - "Y) + ~ ( ~ )  k) wl) A h2) • 

3. When i > reldim X the isomorphism H:~' (X~/K)  ~ S:ns(X, i) of (S.5) is 

given by the formula 

~i-1 /d~i-2 u • H~gl (X~/K)  C At,K/ A',K ~-~ ((0, (1 - (¢*/qi)k)U))k> o. 

Proof: Using Lemma 3.4 (see also Remark 5.2) we find a map 

Cone ( 1 -  \q~(¢* ])k: F(Y, ~)K(lOg(Y -- XK)})-+ ~*A',K)[--1] 

-+Cone(  1 -  ((p'~k\qn ] : F i l nRFdR(XK/K) -+ RFr ig (X /K) )  [-1]" 

Writing out the long cohomology sequences we saw that the maps on rigid 
cohomology are always isomorphisms, and Hodge theory shows that the maps 
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r ( y ,    /K(log(Y - xK)>) ~ Fili HJdR(XK/K) are isomorphisms for j ---- i, i - 1 

(for i - 1 both sides are 0). It follows that  the map on the degree i cohomology 

is an isomorphism and together with (8.3) the first part follows. The second 

part folIows easily from Remark 8.7.2. The last part is straightforward (compare 

Remark 8.7.3). II 

In precisely the same situation we can also compute the modified Gros style 

syntomic cohomology. Since X is already smooth in a neighborhood of X the in- 

duced filtration on the complex of differential is obtained by equating the terms 

of low degree to 0. The proof of proposition 1.10 in [Ber97] also gives that  
o>~'~ This makes the next propo- Fil-~ R Frig (X~/K)~,-~ is quasi-isomorphic to '*~At,K" 

sition obvious. 

PROPOSITION 10.2: Let X and ¢ be as above. There is a canonical isomorphism 

[-I~8(X,i ) ~ lir~ {(w,h):w e fP At,K~ 
k 

( ~i-1 /d~i-2 , d h =  1 -  w},  (10.4) h e At,K At,K \ - ~  ] ] 

and the connecting maps and cup products are given by exactly the same formulas 
- i  as in Proposition 10.1. The map Hims(X, i) -+ H~,s(X, i) is simply given by 

sending (w, h) to (w, h), where w is seen as an algebraic form with logarithmic 
singularities on the left and as a rigid form on the right. 

PROPOSITION 10.3: For X = Spec(A), ~ and ¢ as above, the composed map 

A × ~ K I ( X )  c} 1 • Hms(X, 1) 

is given as follows: Let f E A × and let ] be its reduction. As ] is defined 
over some finite field, there is some power of ~o, say ~k, of degree qk, such that 
] o ~o k = ]qk. It follows that f o ck -- fq '  (mod p) and therefore that the rigid 

function 
fq~ 

fo .-- f o ¢-------- ~ 

o satisfies logfo E f~A*,r" With all that, under the isomorphism (10.1) the coho- 

mology class c](f) is given in degree k by 

dlog f,  log fo '~ 
qk ] "  
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The exact same result is true with Hms replaced by/-)ms. 
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Proof: First we notice that  the last statement of the proposition follows immedi- 

ately by Proposition 10.2. Conversely, by Lemma 9.6 and the fact that  Hms Chern 

classes map to de Rham Chern classes under Hims(X, 1) ~ F1H~R(XK/K) ,  the 

proposition will be true for Hms if it is true for/t ins,  and moreover this equiv- 

alence is true for each X and ¢ separately. Next one easily checks that  the 

statement of the proposition is compatible with the transition maps (10.2). This 

means that  by replacing ¢ by Ck we may always assume k = 1. We will abuse 

the notation to write c~(f) for the component of the regulator in the k = 1 level 

of the direct limit, which is defined under our assumption. We start  with the 

case X = G m  (so A = ~;[T,T-i]) ,  f = T and ¢ is defined by ¢*(T) = Tq. Since 

the modified syntomic Chern class lifts the de Rham Chern class, which for T is 

just dlog T, we see that  

c~ (T) = (h, dlog T), where dh = dlog T - 1 dlog ¢* (T) = 0. 
q 

The proposition in this case amounts to the statement that h -- 0. To see this 

we use the involution r:  A -+ A defined by r(T)  = T - i .  As the Chern class is 

functorial, and as T commutes with ¢, we see that 

c](T -1) = v*(h, dlogT) = (r 'h ,  T* dlogT) = (h, - dlogT). 

As c~ is a group homomorphism, we have (0, 0) = c~(T - i .  T) = (2h, 0), which 

proves what we wanted in this case. It follows that in this case the proposition is 

also proved for /~ms (note, however, that the proof would not have worked if we 

used/:/ms directly because knowing the cohomology class of w is not sufficient to 

determine it uniquely without the assumption of log singularities). 

Now we prove the proposition for a general X and ¢ on/t ins,  hence again for 

Hms as well. Let Y = X x pi and let X be the closure of the image of X in 

Y under the map x ~-~ (x, f (x)) .  Then (X, Y) give data for the computation of 

/t~ms(X, 1). Let U' C Xg be a strict neighborhood of ]X~[~ on which ¢ and f0 

are defined. Let U be a strict neighborhood of ]X~[? in ]X~[? contained in the 

preimage of ]X~ [? N (U' × Gin) under the map (x, T) ~+ (¢(x), Tq). The existence 

of such a U is guaranteed by Lemma 4.3 and the assumption that on X~ we have 

](~(x))  = (](x)) q. Then [-Iims(X, 1) is realized as the first cohomology of the 

complex 

(10.5) Cone(1 - ¢*/q: RF(U,j  t Fil_~125) -+ RF(U, j t~5 ) ) .  
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The projection from U to the X component induces the identity map from (10.4) 

to this cohomology. The projection to p1 similarly induces f*. To prove the 

proposition it is therefore enough to prove that the pullback of (dlog f ,  log(fo)/q) 

under the first projection is the same as the pullback of (dlog T, 0) under the sec- 

ond projection, and it is enough to do this on the cohomology of global sections, 

i.e., with F replacing RF in (10.5), because both maps factor through this group. 

It thus remains to show that (dlog(f(x)),  l og ( fo ( x ) ) / q ) -  (dlogT, O) = d(H) = 

(dg,  (1 - ¢*/q)H),  with H a rigid function defined on some strict neighborhood 

contained in U and vanishing on the set {(x, T): f ( x )  = T}. It is easy to see that  

the function H(x ,  T) = log( f (x ) /T)  works and this completes the proof. | 

Remark 10.4: In the second part of the proof the use of the Gros style 
cohomology is essential. 
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